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Intrcduction

The generalized network mocel, or problem, ([1 ]) and the closely
related restricted dyadic problem ([ 1 ]) (called the generalized
"transportation” problem in [ 8]) are two of the most frequently
encountered special model types occurring in applications of linear
programming. Although they are next in order after pure network or
distribution models with respect to ease of computation, the jump in degree
of difficulty i1s such that up to the present, at any rate, there exist no
algorithms for them comparable in speed or efficiency to those for pure
network or distribution problems. Yet examples abound in which some
additional special structure to these generalized models facilitates
soluticn to the extent that one expects solution methods to exist which
involve little more computational effort than the pure cases. Cften, too,
these special structures may be part of larger or more complicated models
of the same general type.

For such reasons, the development of special efficient techniques for
identification and solution of any significant subclasses is an important
task. We address ourselves to it from the viewpoint of the generalized
network model because of the additional insight offered by the associated
topolegical structure. Thus, in this paper we designate by topological
properties two special subclasses which permit evolution of efficient
algorithms. These follow by extensions of methods of Charnes and Cooper

and of Dijkstra for the corresponding pure network problems. ‘le obtain
easily implemented algorithms which provide an optimum in one "pass" through
the network. The proofs provided for these extended theorems differ in
character from those provided(or not provided) in the more special "pure"
problem algorithms published.

A (pure) network is an oriented connected graph with the following
additional features; associated with each link (or arc) is not only a
direction but a price, and with each node (or vertex) a quantity
representing a supply or demand. Some commodity is regarded as flowing along

the links from nodes at which a supply is present to nodes at which there




is some demand; flow on any link produces a per unit revenue in the amount
given by the price on that link. Capacitated networks, meaning networks

in which there is an upper bound to the flow on each link, are not considered
here. (see (1], [6].)

Such a network, having m nodes and n links, can be described by its
incidence matrix A, an m x n matrix in which the jth column (corresponding
to link j) contains a -1 in row k, a+l in row q, and zeros elsewhere when
link j leads from node k to node q. An m-vector, b, contains in its ith
position the supply (with a - sign) or demand (with a + sign) associated
with node i ; the n-vector, ¢, contains in its jth position the unit price
associated with link j.

If it is desired to maximize total revenue while satisfying the supply
and demand restrictions, the optimal flow pattern x 1is the solution to

the linear programming problem:

A T
Maximize c X

(1) Subject to: Ax= b
0

X

Y

X
where x = (El " xj being the flow on link jJ. There exist many
\“n
variations on this theme; for example, some of the equations in {l) may be
replaced by inequalities.

A generalized network differs from the above in that the nonzero entries
in A are not required to be + 1 , although it is still required that each
column have exactly two nonzero entries which are of opposite sign. It is
clear that, by appropriate scaling of the columns of A and the corresponding
elements of ¢, an equivalent problem may be obtained in which the pegative
element in each column of A is equal to -l1. The positive element in the
jth column of A will be denoted kj' The flow on link j may be regarded as
producing revenue in the amount cjxj and then being subjected to amplification

(or attenuation) by the factor kj' Thus these numbers represent, in the




terminology of electrical engineering, "gains" associated with each link. Y/
In its present generality, the above model includes as a special case
the model dubbed "generalized transportation problem" in [7], [8] and [9],
which is a special instance of the "dyadic" models discussed in [1] and [2]} .
Jde shall restrict our attention to a more special situation; henceforth
we assume that the generalized networks under discussion have the following

special features:

(a) Exactly one node (the "sink") has nonzero demand, and
this node will be designated as the mth nodes. 7

(b) Exactly one node (the "source") has nonzero supply, and
this node will be designated as node 1.

{c) There is an unlimited supply at the source; this means
that the first constraint in Ax = b is the equational
equivalent, i.e., incorporates the slack variable for,

n
Z a
j=1

od g S
wherein M is as in the regularization techniques
described in [1] an element from the Hilbert extension
field; it may be thought of as representing a
"sufficiently"” large positive number.

Henceforth, (1) will be understood to incorporate these features.

It should be remarked that condition(c) above is by no means a weak
assumption, and we should indicate some reasons for its adoption. In the
pure network case, we know that the rank of the incidence matrix A is
always m=-1; in the case of a generalized incidence matrix representing a
connected network, all that can be said in general is that the rank is
either m-1 or m. (See appendix.) If A has full rank, it is in general

v See [9].

This condition can be dispensed with; see the discussion of Algorithm 2.



necessary when implementing adjacent-extreme-point linear programming
techniques to maintain a basis consisting of columns of A which will then
contain m columns. The links represented by such columns can no longer form
a so-called spanning tree for the network; any collection of m links in a
network containing m nodes must necessarily contain a loop, and it is just
such loops which are the source of difficulty in developing algorithms for
the general problem. Assumption(c) effectively forces the first constraint
to be redundant, which is a "reasonable" substitute for the convenience of
having A to be of rank m-1.

Even thus restricted, the problem still includes many matters of interest
such as PERT, or critical path scheduling, models. Charnes and Cooper v
gave a "directed subdual method" for the pure network case of the problem,
i.e., PERT networks. It should be emphasized, however, that such networks
have the additional property that the relation < between node pairs (i,j)
determined by: " i < j if there is an oriented path from node i to node j"
determines a consistent strong partial ordering of the nodes; i.e., is
antireflexive, antisymmetric and transitive. A pure network of the type
described above is a PERT network if and only if the nodes form a lattice
under the < relation. The procedure given by Charnes and Cooper is valid
only for such networks; if we allow ourselves to assume that this
property is present, there is a direct extension of their directed subdual

method to the case of a generalized PERT network, which we give here.

Algorithm |

We solve the dual problem to (1) which is to determine an m-vector w

which solves:

Minimize urb

(2) Subject to: 'TA b.d c.r

w € 0, all other Wy unrestricted in sign,

YV see (3].



or as the problem appears with our assumptions,
Minimi K ' 4
ilinimize w) M wo bm

(3) Subject to: z Wi a4 2 e y J1ly eeeqn

i=1

j
v, < 0

in which bm > 0 is the demand at node m, the sink.

Now duality theory assures us that if there is a finite optimum to (1)
there is also a finite optimum to (3); furthermore, the optimal values of
the two functionals are equal. Therefore, if (1) has a finite optimum we
must have w = 0. Henceforth for ease of reference we shall call wj the
node potential associated with node j (corresponding to the jth row of A).
The algorithm is as follows. First discard any node other than the source
or sink which has gnly links leading into (or out of) that node, also
discarding these links; since no flow can occur over such links, there can
be no feasible solution if the network becomes disconnected by this
procedure.

(i) Assign a node potential of zero to the source node.

(ii) Let p(j) = {nodes i; there is a link leading from i to j} ’

and denote by cij and k1j the price and gain of each link (i,j)
leading to j from some i ¢ p(j). Select for use in (iii) any node
s such that all immediate predecessors of s (i.e., all i e p(s))
have been assigned node potentials.

(iii) Assign we = max’ i ¢ c;s and record the link (i,s) for

ie p(s) Kig
which the maximum occurs. If the maximum is taken on for more
than one (i,s) , select any one to be recorded.

(iv) 1If the sink has been assigned a potential, stop; otherwise, go

back to (ii).
It remains to show that the algorithm is executable, that it terminates
and that a unique path from source +n sink is determined by the links
recorded in (iii) which will yield the maximum total revenue.




Now suppose that the lattice property holds; then the nodes can be parti-
ticned into classes Qj where Ql=im},Q2Fp(Ql),...,Qj=p(Qj_l),...,Q£=p(Qt_1), in
which p(Qj) = {nodes i: i precedes r for some r ¢ Qj and i g Qk for k=l,...,j}
and where the Qj are disjoint. ("p(Q)" is mnemonic for "predecesscr of Q".)
It is clear that we may apply the algorithm by assigning potentials
successively to all nodes in Qt y then to all nodes in Qt-l y etc., without
any ambiguity; the procedure must then terminate after at most m steps. It
is equally clear that the links recorded in (iii) contain a unique path from
source to sink, since at each node exactly one link entering that node is
recorded. ‘hen the sink has been assigned a potential this path is found by
looking backward from the sink to its recorded predecessor, then to its
recorded predecessor and so on until the source is reached. The flow along
this path is then easily calculated; suppose the path consists of the links
jl . j2 ,...,jr where jl = (1,12), j2 = (12,13),..., jr = (1r,m) .

b X.
Then x, = ™ and x, = Ji*l , for i = ryr=l,...,1. (All flows are
j_ o= j. ——
r k. i k.
Jr Ji

zero for links not on the path.) It may be verified that these xj do indeed
constitute a feasible solution to the problem (1); moreover, a tedious but

r
straightforward calculation shows that X ¢, x, = w b . It follows
m A 4 A

that the given flows and wy constitute optimal solutions to (1) and (3)

respectively if the node potentials w form a feasible solution to the dual

problem (3). Upon reflection, however, it is apparent that the wy computed

by setting w1 = 0, wj = max w; i cjj actually do form a feasible

solution to (3). For then w5 > '; » c;j s OT wjkij-wi 2 cij' for all i € p(j).
These relations are precisely the constraints in (3) formed by the columns of



=

cT)

(A ! corresponding to links (i,j) for i € p(j). Consideration of these for
all j indicates that all dual constraints are indeed satisfied. The
validity of Algorith 1 is thus established.

Algorithm 2
The more general procedure which we present here is an extension for

1-source generalized networks of a method of Dijkstra for determining the
shortest path between two vertices of a graph. L/ We develop the algorithm
only for networks for which conditions(a),(b),(c) hold, but it will be

clear from the proof of its validity that it is also applicable for networks
which do not satify condition{a), i.e., "multi-sink" networks, since it
actually provides an optimal path from the source to any node. The optimal
flow will then be obtained by superimposing the flows which would be
obtained by considering each sink separately. (/ny node at which there is
positive demand will be designated as a sink.) Algorithm 1 also possesses
this wider scope.

Consider the minimization problem:

Minimize ch
(a) Subject to: Ax=b
x 20

which is to be understood to incorporate conditions{a),(b),(c) mentioned
previously. (A maximization problem may be converted to one in which the
objective is minimization by reversing the signs of the cj .) ‘Whereas
here we do not require the quite restrictive lattice property needed for
Algorithm 1 , two completely different conditions are imposed:

(d) All c; are assumed nonnegative.

(e) For all j , kj <1l.
Condition(e) is fairly stringent; it in effect ensures that the optimal path
has no directed subpath leading from any node back to itself (i.e.,
"feedback") even though it may be possible to form such loops within the

network.

Y See [ 4] , in which the method is stated without proof.



In contrast, condition(d) is usually no restriction whatever. Cften
ad hcc methods suffice to obtain an equivalent prohlem in which all
cj > 03 at the very worst, all that is needed is any dual feasible solution
with Wy = 0 in order to implement the following specialization of a more
generally applicable technique for effecting a transformation to a problem

with nonnegative cj.

Suppose that some dual feasible solution w 1is available with Wy = 0.
The modified objective function eT = cT 5 QTA must have all ¢, > 0 since the
dual constraints wTA < cT are assumed satisfied by w. Moreovei, the only
effect of this transformation is to add a constant to the original functional
ch, since

=) - o /
ch - GTx = wTAx = (O,w2,...,wm) M \= constant.

%

b |

In terms of the network data, this means simply that ijij - &i should
be subtracted from cij to obtain the new éij y all of which will then be
nonnegative. (The double subscript notation has the same meaning as before.)

Prior to application of the algorithm we assume that certain nodes and
links which are irrelevant to feasible solutions have been deleted.
Specifically, these are any nodes other than the source and sink(s) at which
there are only outbound (or only inbound) links, and also these links. If
this deletion disconnects the network, or if there are only inbound links at
the source or only outbound links at the sink(s), then there can be no
feasible flow pattern. Similarly, links leading into the source or out of
the sink may be immediately discarded. (There may be no feasible solution
even if these conditions are not present; such a situation will however

become evident in the course of applying the algorithm.) The procedure

v de develop this general teclmigue elscewhere tegether with other
significant applications.




is then as follows.

(1)

(ii)

(iii)

Assign a node potential of zero to the source; circle the source
(or otherwise denote the fact that its potential is to remain
fixed hereafter).
Suppose the most recently circled node is i.
Let s(i) = {nodes j: there is a link from i to j and node j
is uncircled};

this is the set of immediate uncircled successors to i. If
s(i) is empty, proceed immediately to (iii); otherwise,
for each j in s(i), do (a) or (b) below:

(a) If j has not been previously examined,

w, + ¢

set wj = ik . & [
ij
(b) If a value QJ has already been set for j, reset this
value to

w, + C

min ,Qj ’ i ij
kij

Examine all nodes which have been assigned a potential but which

are uncircled; choose one such uncircled node which has the least
potential and circle it -- say this is node q. If there are no such
nodes and if the sink (any sink, if there are several) is uncircled,
then there is no feasible path from the source to the sink(s) and
the process terminates.

Now for some immediate predecessor p of q the relation

wq = wg ¥ cgg holds. Record the link (p,q) for which this is
k
Pq

the case; if there is more than one, choose any such link. A
unique path from the source to each circled node is now contained
in the list of recorded links. If all sinks have been circled, an
optimum is at hand; if some sink has not yet been circled, go

back to (ii).
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We must establish the validity of the algorithm; it is clear that it
terminates after at most m repetitions of this process. It remains to show
that it terminates either with a correct indication of infeasibility or
with attainment of an optimum.

First, suppose that at some point there are no uncircled nodes which
have been assigned (tentative) potentials. Also suppose that some sink is
uncircled. GSince at each stage in step.(ii) all successors to the most
recently circled node are assigned potentials, the class L of nodes which
have been assigned potentials, whether circled or not, is exactly that class
T of nodes for which one is guaranteed that there exists a path from the
source to any member of T. In our case, L contains only circled nodes,
implying that there are no uncircled successors to any node in L. But all
nodes not in L are uncircled. Therefore there exists no path from any node
in L to any node not in L. Since the source is always in L and we have
supposed that some sink is uncircled, hence not in L, there can be no path
from source to sink, and infeasibility has thereby been exhibited.

For ease of reference, we assume that one of the sinks is chosen to
remain fixed throughout the following discussion; we can then speak without
ambiguity of "the" sink. Now, ruling out infeasibility, suppose that:-the sink
has been circled. Since the list of recorded links contains a path from the
source to every circled node, it certainly contains a path from source to
sink. Because only one link leading into a circled node is recorded and no
link entering the source or leaving the sink is recorded, such a path can
contain no loops (subpaths leading from some node back to itself). Such a
path must therefore be unique. The flow along this path may be computed in
the manner of Algorithm 1.

The matter now remaining is to show that the path obtained is an optimal
path, i.e., whose flow pattern yields an optimum for the problem (4). This
will be done indirectly; once we have shown that the final w; constitute
an optimal solution to the dual of (4), the same computation indicated for
Algorithm 1 proves that the functional values for the two dual problems are

equal and therefore that the obtained flow pattern is optimal for problem (4).
To show that the path obtained is dual optimal we shall show that the path

to any circled node (obtained from the list of links recorded in (iii) ) is
optimal for a problem which consists of designating that circled node as the
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actual sink and hence for the problem (4).

Suppose we were to designate the source node as the sink. Since w = 0,
this is an optimal solution to the dual subproblem consisting of the source
node alone. Now suppose that the collection of circled nodes at some stage
contains r members, and that the circled w3's for all such nodes represents
an optimal solution to all of the dual subproblems obtained by: (1)
considering all circled nodes and all links joining two circled nodes, and
(2) by successively considering each circled node to be the sink. This
supposition is true for r = 1 by the above comment. We shall show that the

process of circling the (r + 1)-st node assigns it a w which is optimal

for the subproblem obtained by considering all r + 1 ci:Zied nodes and
supposing that the (r + 1)-st node is the sink; this induction then yields
the desired result.

Llet p*(r+ 1) = inodes js Jj is circled and there is a link from j to r +1}.

Since we are to circle r+ 1, this means that the circled

W = min wj| M Cj,\rrl or k w w, < ¢
— - . 3
r+l 3 & b lav i) . 4 jyrtl "rtl J = Tj,rrl
g jortl

so that these dual constraints are satisfied. (Recall that in the dual to (4)
the objective is maximization and that the inequalities are reversed from

those in (3). ) Moreover, the w thus chosen is the largest possible one

rvl
which satisfies these restrictions. It only remains to show that the
dual constraints corresponding to any links leading from r + 1 to a
previously circled node are also satisfied, i.e., that

kr11,j wj "W < cr+1,j for all circled j such that there is a link from

r+l1 to j. Consider any such j, and suppose node r was the node circled
immediately prior to the circling of r+ 1. If we can show that

wj < W, we will be finished, since the same argument will prove that

- W - W
r rrl 3 r+l
construction. Since all cj 2 0, this implies that "j ~ Mg < cr*l.j s0

that, because 0 < krtl.j <1, also krvl,j 'j - w4 < crfl,j ai dactasd

Suppose q is the g-th node circled and q + 1 the (q+ 1)-st. Vlie show
inductively that Y S-"q'l ; this is obviously true for g = 1 since w = 0.

8 < 0 and hence w < 0 since all w, are nonnegative by
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There are two casess either there is a link from q to g+ 1 or not. In the

first case we have wq+l 2 wg;+ cg,g:l > wq y SO wq < wq*1 . If there is
q,q*l
no link from q to q + 1, consider the situation immediately before q is
circled; both q and q + 1 must have been assigned potentials but have been
uncircled. If wq > wq+1 then it would be impossible to choose node q to be
circled next since the minimum of such uncircled w, is always used to
select the next node to be circled. Hence we must have wq < wq+1 ’
which then establishes that wj < w_ as was needed to complete the proof
above; the validity of Algorithm 2 is thus established.
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Appendix

Rank of a Generalized Incidence Matrix

We consider a generalized incidence matrix C representing a connected
generalized network; i.e., C has precisely 2 nonzero entries per column, and
the network has the property that there is a path consisting of a sequence of
links of the network (possibly with their orientation reversed) which connects
any two given nodes in the network. Clearly then, for a network having m

nodes and n links, C is m x n and connectedness implies n 2m - 1 .

Theorem m > rank (C) >2m -1 .

Proof Rank (C) is always less than or equal to m; to show that rank
(C) 2m = 1 we show that the submatrix obtained by deleting any row of C
has full rank, by showing that any such m - 1 rows are linearly independent.

Delete any row of C (this corresponds to the deletion of some node),
and partition the remaining rows (nodes) into two classes, A and B, such
that A contains all rows containing "singleton" elements and B contains all
other rows; i.e., row i is in A if and only if it contains the only
nonzero entry in some column of ﬁ . Now suppose that there exist
a; o vy o not all zero, such that
(1) ';1 a; Al 52 } 0 ,

i=1 =1

where Ai (Bj) is the i-th (j-th) row of A (B) and ml-* m,=m - 1.

The system (1) embodies n equations; by the definition of A and B there

are m of these (corresponding to columns, say, k(l),...,k(i)....,k(ml) ofG3 )
such that Bi(i)= 0 for j= 1,...,m2 and i = 1,...,m1 s Since otherwise row

B’ would be in A, Therefore, from these (unit vector) columns we obtain the

m, equations

1

Zl ai k( = 0 , or by the singleton character of A,
)

i N - =
ay A k(1) = 0 and hence ui 0, fori l,...,ml .
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Next, by connectedness of the network, there must be a link from some
node in the collection represented by A to one in the collection
represented by B (or vice versa), since by construction there are no links
between the deleted node and the nodes of B. In other words, there must
exist a column q of Q with one nonzero entry in one of the first m
positions and the other in the (ml + k)-th position, for some k. Recalling

that all a; = 0 , equations (1) become;

m2 j
(2) T B, B;=0, 1= lyeeeyn .
o i
F1
The column q just mentioned ensures that one such equation reduces to

k _ k _
By Bq = 0 where Bq# O; hence 3, = 0 .

Now, switching row k from B to A and renaming pk as a + the
1

preceding argument employing the connectedness property of the network
may be repeated until all rows have been exhausted. Ve obtain thereby
that all pj = 0., and hence the rows of(g) are linearly independent.
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all security classification of the report. Indicete whether
‘““Restricted Deta’’ is included Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all

capital letters. Titles in all cases should be unclassified.

If @« meaningful title cannot be selected without classifice

tion, show title classification in all cepitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES If eppropriste, enter the type of
report, e.g., interim, progress, summary, annual, or final.

Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middle initial.
If xilitary, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7s. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, L e., enter the
number of pages containing information

7b. NUMBER OF REFERENCER Eater the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriste, enter
the applicable number of the contract or grant under which
the report wes written

80, &, & 8d. PROJECT NUMBER: Enter the appropriate
militery department identification, such as project sumber,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Eater the offi-
cial report number by which the document will be ideatified
and controlled by the originating ectivity. This number must
be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been
essigned any other numbers (either by the originator
or by the sponascr), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES Eater any lim
itations on further dissemination of the report, MMM

INSTRUCTIONS

imposed by security classification, using standard statements
such as:

(1) ‘““Qualified nquutcn may obtain copies of this

report from DDC.”’
“Foreign announcement and dissemination of this
report by DDC is not authorized.’’

‘“U. S. Government agencies w-m copies of
this report directly from DDC. eor qualified DDC
users shall request through

2)

3

‘“U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(O}

“‘All distribution of this report is controlled Qual-
ified DDC users shall request through

(S)

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

1L SUPPLEMENTARY NOTES: Use for additional explane-
tory notee.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory sponsoring (pay~
ing for) the research and development. Include address.

13. ABSTRACT: Eater an abstract giving a brief and factual
of the document indicative of the report, even though
it may also appear elsewhere in the body of the techuical re-
:ﬂ l‘l*“awuoul space is required, a continuation sheet shall’
atte:

It is ly desirable thet the abetract of classified reports
be uacless . Each paragraph of the sabstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (78). (8). (C), or (U).

There is no limitation on the of the abstract. How-
ever, the suggested leagth is from 150 to 225 words.

14. KEY WORDS: Key words are techaically
or short phrases that characterise a report and may be used as
index eatries for cataloging the report. Key words must be
selected 8o that no security classification is

required. Ildenti-
fiers, such as equipment model designation, trade name, military
project eodon-o.ﬁ loc.uo.-ybuuduhy
ot‘-h will be fo! o'odbyuh‘lc. of techaical con-
text. assignment of links, reles, and weights is optional.
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